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SUMMARY

The efficiency and accuracy of several different techniques proposed for

the numerical integration of ordinary differential equations with widely vary-

ing damping properties are examined. The methods analyzed include the stan-

dard Runge-Kutta method, a modified Runge-Kutta method proposed by Treanor,

predictor-corrector schemes, and implicit procedures. First, the methods are

studied as they apply to linear coupled differential equations with constant

coefficients. The conclusions drawn from these studies are then tested in

nonlinear cases by numerical calculations made for a gas in chemical non-

equilibrium behind a normal shock wave. An implicit method is strongly

recommended if the local eigenvalues are negative (damping) and widely

separated.

INTRODUCTION

The numerical integration of the nonlinear equations arising in the

study of a gas flowing in chemical nonequilibrium poses, in certain cases, a

severe numerical stability problem. The existence of such a problem is well

known (see refs. 1-5). It is also well known that numerical solutions involv-

ing the use of standard Runge-Kutta and predictor-corrector methods (referred

to as conventional methods) can be prohibitively expensive because they

require excessive machine running time.

Several attempts have been made to overcome the difficulty by introducing

numerical methods specifically designed to cope with the problem. These

methods fall into two principal categories. In one, the nonlinear differ-

ential equations are reduced to nonlinear difference equations, as in the con-

ventional methods, but the coefficients in the differencing equations contain

certain parameters which depend on the solution as it proceeds. If the

differential equations were uncoupled, these parameters would be the local

eigenvalues of the individual equations. A typical example of this class is

the method proposed by Treanor. In the other category, the differential equa-

tions are first locally linearized and the resulting linearized form is solved

either exactly (ref. 6), approximately (ref. 7), or by finite difference

methods (ref. 8).



A basic objective which motivated the numerical research reported herein
was to comparethe efficiency of the various numerical methods available. To
accomplish such an objective_ it is essential that we know the fundamental
relationship of a set of coupled differential equations and a corresponding
set of coupled difference equations obtained from the former by the applica-
tion of any given differencing scheme. To find such a relationship that
applies rigorously to general nonlinear equations is quite outside the scope
of this paper. However_the fundamental relations regarding the stability
and accuracy of numerical solutions to coupled linear differential equations
with constant coefficients can be rigorously defined. As a result of these
definitions the numerical methods mentioned can be comparedobjectively as
they apply to such linear equations. Wethen hypothesize that this comparison
can be used to estimate their usefulness in nonlinear cases.

LIST OFIMPORTANTSYMBOLS

[]

[ ]-i

A

[An ]

det()

Fn

H

ho

J

[z]

K i

m

N

P

QJ

R

matrix of enclosed quantity

inverse of matrix

area

matrix in locally linearized equations (see eq. (4))

determinant of enclosed quantity

derivative of _ with respect to s

value of F at step n

effective distance a numerical method_advances the integration after

time for two evaluations of the derivatives

enthalpy of the jth species

unit matrix

equilibrium constant for ith reaction

number of equations

number of chemical species

Treanor parameter (see eq. (lO))

production of species j in moles per unit volume per unit time

universal gas constant
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s

T

U

V

7'

x

7j

C

%1

_2

D

Xi

T

independent variable

tempe rature

velocity

dependent variable in uncoupled equations (see eq. (5))

dependent variable in coupled equations (see eq. (2))

derivative of w with respect to s

distance downstream of normal shock

molar concentration of jth speciesj moles per unit mass

upper bound of error permitted in numerical solution

parasitic eigenvalue

driving eigenvalue

density

degree of nonequilibrium of ith reaction

vector

transpose of vector

Superscripts



THEBASICNONLINEAREQUATIONS

The equations governing inviscid, one-dimensional, nonequilibrium flow
can be written

--du --d__PD
pA _xx + uA dx = -puAx

pu _ + T El 7 _ + R El 7 _ + pRT _.i--dx = 0

du

_ i) dT N dTi+ Tic p _ + _. hi _--= 0
l >(1)

d71

PUdx - Ql(p,T,71," " ",TN)

dY N

pu

Although the equations are written for general one-dimensional channel flows,

only the results for flow behind a normal shock, for which _ = 1 and _x = O,

are presented. This is done deliberately to isolate the basic numerical prob-

lems discussed in the following sections. The fluid dynamic equations were

differenced and numerically integrated just like the chemical equations even

though they could have been integrated analytically. Thus, all the dependent

variables are treated alike as they would be in a general two-dimensional flow.

Equations (i) can be written in matrix-vector form by introducing the

-*Tvector _*, such that its transpose w _ = (u,p,T,7 l, • ", TN) the vector

_*, such that _.T = (_Pu_x,0,O, Ql ' . .., QNI, and the matrix [B*]. The

result is

d_r_ c*[B*]

In the general case the matrix [B*] can become singular (this occurs

when u equals the sonic velocity). Some of the numerical difficulties

brought about by this occurrence can be avoided by introducing the new

independent variable s such that

x' - dx = det(B*)
ds
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and inverting the equation and multiplying both sides by det(B*) to obtain

_ _* _ det(B*)[B*]-l_*

where det(B*)[B*] -1 is the adJoint of [B*]. Finally, we define the new

vectors _w and _ with one element more than their starred counterparts

= _T ,x)

or

and

_T = (u,o,T,71, " . .,ZN,X)

_T = [_.T,det(B.) ]

This provides a set of m = N + 4 simultaneous equations

ds
(2)

in which there is no explicit dependence of _ on the independent variable

s. These are the basic nonlinear equations that motivated the numerical

studies reported herein.

LOCAL LINEARIZATION AND PARASITIC EIGENVALUES

Consider the set of equations

ds
(3)

These equations are autonomous; that is, each equation is of the form

wi' = Fi(Wl,W2,. .,Wm )

where

each

!

w i

F i has no explicit dependence on the independent variable s. If

F i is expanded about a local point referenced as n, where s = nh,

Fin + (w I Wln)F(_
(_Fi_ + O[(_-_n) 2]

= - + . . + (wm -Wren ) k_Wm/n
n



Let the elements (aij)n of a matrix [An ] be (_Fi/_wj) n. Note that the

neglected higher derivative terms involve (_ - _n) 2. If _ = _n+1, this can
2 _ _ 2 _t

be written h [(Wn+ l - Wn)/h] 2 or h (w_) plus terms of O(hS). Thus we find

_' = [An]_ + F-_n_ [An]w-_n + O(h 2) (4)

Equation (4) gives, neglecting higher order terms, a locally linearized

form of the original equations. Further, since the original equations were

autonomous, the linearized equations have constant coefficients. It is well

known that the complementary solution of equation (4) can be written

J

w i = Cij I + Cij2s + . . + CijK( j , i = I, 2, • ., m

j=l

where K(j) is the multiplicity of the jth root to the characteristic equa-

tion, J is the number of distinct roots, hj, and m is the number of equa-

tions. From a somewhat different point of view, the values of hj (which can
be complex) are equal in magnitude, sign, and multiplicity to the eigenvalues

in the matrix [An].

Now it is typical of equations for nonequilibrium flow that in certain

regions some of the eigenvalues are large, negative, real numbers and some

are relatively much smaller in magnitude. Let these be represented by

(hl)n = -i000_ and (ke)n = -_, respectively. When integrating equations with

such eigenvalues, two cases can occur. One, we wish to resolve the effect of

(hl)n over the small region where e-l°°°_ s is significant. Then we must

perform our calculations at points spaced very close together. Two, s is

large enough for e-_O°°_ s to be negligible compared to e -_s. Then we need

only use the much coarser spacing that resolves e -_s. If the solution could

be carried out analytically, this would pose no problem. However, if it is

carried out numerically_ using conventional Runge-Kutta or predictor-corrector

schemes, violent instabilities occur for the coarse spacing. For this reason,

when a set of differential equations has eigenvalues such as (hl)n and (ke)n

in the above example, we refer to those like (hl)n as "parasitic" eigenvalues

and those like (h2)n as "driving" eigenvalues. Sets of equations having this

property are often referred to as "stiff" equations.

In order to discuss numerical methods used to solve equations with

parasitic eigenvalues, we need the following brief discussion of some results

from numerical analysis.

A THEOREM REGARDING THE NUMERICAL SOLUTION

OF ORDINARY DIFFERENTIAL EQUATIONS

Equation (4) represents a set of coupled, ordinary_ differential

equations with constant coefficients. In general, these can be uncoupled



insofar as they can be reduced to the Jordan canonical form (see ref. 9). For
the purposes of numerical research it is often convenient to construct coupled
equations from simple sets of uncoupled ones. Since this is the approach
taken in appendix B_ and since it illustrates the connection between coupled
and uncoupled sets_ we proceed to outline it here.

Consider the special uncoupled set of linear equations with constant
coefficients

Vl ! = _iVl + fl

V21 = _2V2 + f2

These are special in the sense that their solutions have no terms of the form

Cijksk with k > 0 in the complementary solution of equation (4); in other

words 3 no coupled set formed from them will have a matrix with multiple

eigenvalues. They can be written

_, = [T,]_+ f (5)

where [L] is a diagonal matrix (i.e., all off-diagonal elements are zero).
_t

w = [B]_ (6)

where [B] is an arbitrary nonsingular matrix. Then_ if

[A] = [B][_][B]-_

and

we can write

[B]7g=

(7)

(8)_' = [A]_ + g

where the eigenvalues of [L] and [A] are identical. Introduce the linear

operator Zh to represent any conventional I Runge-Kutta or predictor-

corrector method with step size h. It is essential that_ in a given step_

iMore precisely_ any set of linear difference-differential equations with

constant coefficients applied in the same way to all of the simultaneous

differential equations. All references to conventional numerical methods in

this report assume a choice from this set.
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the identical method be applied to all the equations.

integration is started at the step n - j, at the step

Then, if the numerical
n we have

_n = Zh(_j'_j''_j) ' j : n,n-l, .,n-j

The value of _n differs from the analytical value of _ by an amount equal

to the error introduced by the numerical method.

Consider the following theorem whose proof is given in reference i0.

Theorem I: If _n = Zh(_j'_j''_j) and w n = Zh(_j,_j,_j), then

_n = [B]_n + er, where er depends onl_on the round-off

process used in the computation.

The theorem can be paraphrased as follows: except for round-off error, solu-

tions are the same whether or not a set of linear differential equations with

constant coefficients is first uncoupled and then integrated numerically, or

first integrated numerically and then uncoupled, no matter what conventional

numerical method is employed, provided the same method is used on all of the

equations. Two corollaries follow, both of which assume that machine limita-

tions such as round off and floating overflow can be neglected.

(!) Both the stability and accuracy of a conventional numerical method

applied to equation (8) are independent of the magnitude and sign of the

elements of [A] except as those elements determine the eigenvalues.

(2) A step size that is chosen to resolve the effects of driving

eigenvalues can be used to integrate equation (8) and the numbers obtained

from the solution contain, to the desired accuracy, all information concerning

the effects of the driving eigenvalues regardless of errors brought about by

the parasitic ones.

Corollary (2) is literally true even if the numerical method is unstable

for the parasitic eigenvalues. However, the computing machine limitations

neglected in formulating the corollary make this an impractical result for our

purposes even if we were to uncouple the results. The important consequence

of the corollaries is that to provide accurate and usable solutions to prob-

lems with parasitic eigenva!ues, we need only provide a method that is stable

for large, negative, real values of _lh and accurate for any complex h2h

relatively much smaller in magnitude. We next discuss some methods from this

point of view.

APPRAISAL OF METHODS

With the preceding material as a background, we can now discuss the

relative merits of several procedures used for the numerical integration of

coupled equations with parasitic eigenvalues. These procedures include
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explicit methods, implicit methods, and special methods that have been

constructed for problems of this type. In order to compare such methods

fairly, we first introduce a representative step size such that

H _ the effective distance a numerical method advances the integration

after a time equal to the time required for two evaluations of the

derivatives.

Since in the numerical solution of nonequilibrium problems, the time required

to calculate the derivatives is the predominant factor, H is the significant

reference_ rather than h, the step size used in the computation. Furthermor%

we define the term real stability boundary as the largest real negative value

of _H for which a numerical method is stable when used to integrate a set of

coupled, linear_ differential equations having h as an eigenvalue.

Conventional Explicit Methods

These methods encompass all standard predictor-corrector and Runge-Kutta

techniques. About the simplest of such techniques_ and one that has an

accuracy that is acceptable for many practical cases, is given by

V(n+ll)= Vn + hVn, }1 )vn+l = Vn + g h \ n+l + Vn'

(9)

This method is referred to either as an Euler predictor with a modified

Euler corrector or as a second-order, Runge-Kutta method. Actually, the

method is unstable for problems with high-frequency_ low-amplitude noise (see

ref. i0)_ but this does not occur in the problems under consideration since

the parasitic eigenvalues are real, not imaginary. Equations (9) have a

truncation error led by (i/6)(hH) s and a real stability boundary equal to

-2.0. Higher order Runge-Kutta methods are more accurate but less stable.

For example 3 the third-order Runge-Kutta (Heune) method has a real stability

boundary equal to about -1.6, and the standard fourth-order, Runge-Kutta

method is limited still further to about -1.4. Most conventional predictor-

corrector methods (Ha_mling's, Adams-Moulton, etc.) have real stability

boundaries lying between -i and 0.

For all conventional explicit methods the step size is dictated by the

largest eigenvalue of the system no matter whether it is parasitic or driving.

Treanor's Explicit Method

Treanor's method (ref. 3) is explicit and was designed specifically to

cope with the numerical integration of stiff equations. In constructing this

method it is assumed that the basic equations can be approximated by a linear-

ized form, but no____tthe form given in equation (4). Instead 3 each equation is
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differenced as if it could be written 2

vi' = -(Pi)nVi + (Ai) n + (Bi)nS + (Ci)n s2 (io)

where (Pi)n, (Pa)n, . . are constants in a given step, but are allowed to

vary from equation to equation, and Ai_ Bi, and C i are all functions of Pi

only. The parameters (Pi)n would be the local eigenva!ues of the individual

equations if the equations were uncoupled. In practice they are formed by

ratioing certain terms in the first two calculations made at the intermediate

steps in a standard_ fourth-order_ Runge-Kutta process.

Certain general statements can be made about this method. It reverts to

the Runge-Kutta method if h is made small enough. Of course_ if this prop-

erty is used_ the method will be no improvement on the conventional one. The

method is excellent if the differential equations are "nearly" uncoupled.

Unfortunately, however, it is not simple to make an a priori estimation of the

degree of coupling in sets of equations.

The most serious difficulty that can arise in the general use of

Treanor's method is discussed next. First, one can show (see appendix A) that

if_ in a given step_ different differencing schemes are used on different

equations in a coupled differential set_ theorem I no longer holds. It fol-

lows immediately that a method which permits Pi in equation (i0) to vary

with i will give solutions whose accuracy and stability will, in general_

d_epend on the individual elements in [An]. Sincej for a fixed set of eigen-

values_ these elements can have an extreme variation_ such a dependency can

lead to serious n_merical errors. The actual values that the parameters

(Pi)n are likely to take when found by Treanor's method are studied in

appendix B. It is shown that they are nearly always about the same and

approximately equal in magnitude to the largest parasitic eigenvalue detect-

able in w. However_ the fact that this is not always the case is the

principal deterrent to the general recommendation of the method.

If the parameters Pi in the differencing scheme proposed by Treanor
are made to be the same for all i in a given step_ theorem I does apply to

the results. In such a case the method 3 when used to integrate coupled_

linear, differential equations with constant coefficients_ can be subjected

to a complete analysis. This has been carried out and is presented in

appendix C. The results regarding the stability for real negative eigenvalues

are presented in figure i. Since theorem I applies_ the method acts on each

eigenvalue as if the others were not present and a single figure gives the

whole stability picture. If all the eigenvalues are such that -2 < _jh < O,
the Treanor differencing scheme with fixed P is stable for 0 < Ph < _. On

the other hand_ if an eigenvalue exists such that for it Xh < -2_ a stability

corridor starts to form, and the choice of P becomes critical. Two situa-

tions can arise. First, if there is only one parasitic eigenvalue_ or if all

2Another method which assumes this kind of local approximation is given

in reference ii. However_ because of the ambiguity in just how the values of

(Ai)n, (Bi)n, and (Ci) n are to be formed in the case 7' = _(_,s), this

method cannot be analyzed in detail.

i0
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Figure i.- Stability boundaries for Treanor's

method for real negative h.

the parasitic eigenvalues are

clustered inside the corridor, the

method is stable for indefinitely

large separations between the para-

sitic and driving eigenvalues, pro-

vided P is appropriately chosen.

Second, if two or more parasitic

eigenvalues do not lie in the corri-

dor, the method is still stable for

coupled equations in which

0 > hjh > -i0 if Ph is 8. Since
the method requires four evaluations

of the derivatives in a single cal-

culation step, this gives a real

stability boundary hH equal to

about 5, an improvement of about 3.6

over the standard, fourth-order,

Runge-Kutta method. These observa-

tions suggest certain modifications

to Treanor's method if it is to be

used in general; two such modifica-

tions are discussed at the end of

appendix B.

Implicit Methods

The methods discussed above are explicit. It has been known for some

time that certain implicit numerical methods are unconditionally stable for

all real negative values of _h. Probably the most widely used of these is

the implicit modified Euler method described by

i
Vn+l = Vn + _ h(Vn+l + V'n) (ll)

which is even stable for all complex values of hh with negative real parts.

In studies of parabolic partial differential equations, this is commonly

referred to as the Crank-Nicholson method (see, e.g., ref. 12, po 264).

Another method which also has second-order accuracy for small hh, but is not

so well known, is given by the two step equation

1 (4vn+l _ Vn + 2hVn+2 )
Vn+ 2 =

(12)

Its use was suggested by Curtiss and Hirschfelder (ref. i, eq. (17)), and it

is basically the method used in boundary-layer-theory studies by Davis and

Fl_gge-Lotz (see ref. 13). Equation (12) is not quite as accurate as equa-

tion (ii), but it is more stable, that is, the parasitic eigenvalues are more

heavily damped. Methods that are unconditionally stable for real negative

values of hh and yet give higher order polynomial approximations for small

ii



values of kh are given in both references I and 8. They can be derived by
calculating the derivative v' at n + k using the values of v at n + k,
n + k - i, . . ., n. The first five of these formulas are given in
reference 14, pages 96-98.

The implicit method studied in this report is that given by equation (ii).
Whenapplied to equation (4), there results the set of simultaneous equations

i h[An] (W_n+l- _n) = hFn + 0(hS)Ill - (13)

where [An] and F n do not contain s explicitly, and F n = _.

In order to compare this with other methods, it is necessary to estimate

the time required to calculate the elements _w_/$wj of [An ] which, for

nonlinear problems, must be reevaluated at each step. This time varies sig-

nificantlywith the problem and the details of the programming, but a reason-

able general estimate for problems with m simultaneous equations is to allow

for m additional time intervals equal to that required for evaluating w_.

Roughly, one more such interval is required to solve the simultaneous equa-

tions, so the equivalent of about m + 2 calculations of w_ is required to
advance the implicit method one step. Thus, approximately, h = H(m + 2)/2.

The error of the implicit method is led by the term (_h)3/12 when applied to

linear equations. For nonlinear equations the overall error is seen to

remain at 0(h3).

At this point the essential differences between the procedure proposed

in this report and that proposed in reference 8 can be brought out. Basically,

both processes depend upon an implicit method to insure stability. However,

in reference 8 it is recommended that some of the equations (especially the

fluid dynamic ones) be differenced by an explicit scheme. It was shown in the

previous section that such a procedure invalidates the use of theorem I, which

means that the stability and accuracy of the results become dependent on the

size of the elements in the matrix. This can cause serious numerical diffi-

culties. It is recommended here that all coupled equations be differenced at

a given step by precisely the same differencing equation whether or not the

method used is explicit or implicit. It is further suggested in reference 8

that higher order implicit methods with step numbers greater than i can be

used. In view of the error introduced into equation (13) by the nonlinear

terms, the employment of methods embedding polynomials of order greater than

2 cannot be Justified in general. Further, the use of multistep methods

detracts from the flexibility of the step-size adjustment available in one

step methods. It is therefore proposed that when the use of an implicit

method is warranted in the study of nonequilibrium flow problems,

equation (13) is optimum.

Locally Exact Methods

Finally, let us consider the approach to the problem used in reference 6.

In methods such as this the basic equations are linearized to the form

12



given by equation (4), and these linearized equations are then solved by
actually finding the eigenvalues of the matrix [An]. Except for the fact that
these eigenvalues must be determined numerically, this provides exact solu-
tions to the linear equations, and we will refer to such methods as "locally
exact." The essential differences in the detailed use of the various methods
is summarizedin the following table. For a fixed accuracy, proceeding
downwardin the table corresponds to increased computing times.

Conventional predictor-
corrector methods

Must calculate Fi in equation (2)
for i = i, 2, 3, • • ., m

Conventional Runge-Kutta3
and Treanor methods

Must, in addition, calculate
_Fi/_u i for i = i, 2, . ., m

Implicit methods Must, in addition, calculate all
off-diagonal terms _Fi/_u k for
i,k = i, 2, . ., m; i _ k

Locally exact methods Must, in addition, calculate all
eigenvalues of [An]

It is probably wise to estimate the largest local eigenvalue every once
in a while in any event, but the exact calculation of all eigenvalues can be
time-consuming, and, on this basis alone, 4 is to be avoided where possible.
Weseek, then_ to find conditions under which the calculation of all the
eigenvalues at every step can be avoided on the basis that such information
increases neither the accuracy nor the stability of the results. In order to
do this, consider the nature of our particular problem. Twopossibilities
occur. First, the linearized differential equations are themselves stable
(inherent stability) . That is, the real parts of all eigenvalues in [An] are
negative. Then, by theorem I, the implicit method given by equation (13) is
just as stable as the locally exact methods, since the stability of both

depends in the same way on exactly the same eigenvalues regardless of whether

or not such eigenvalues are determined explicitly. Further_ for general

purposes_ the implicit method is _ust as accurate as the locally exact methods

since the order of error introduced by the linearization itself is as great as

that caused by the differencing. Thereforej in the case of inherently stable

differential equations, the continuous explicit calculation of the eigenvalues

adds neither to the stability nor to the accuracy that is achieved by use of

the implicit method given by equation (13).

The other possibility mentioned above comes about when the linearized

equations are themselves unstable. It is conceivable in this case that the

3The standard 3 fourth-order, Runge-Kutta method is implied. For this

and for Treanor's method _Fi/_u i can be determined by the calculations made

at the intermediate step. In the Runge-Kutta method it is not necessarily

used although sometimes it is employed to monitor step size.

4The experience of the authors has been that standard subroutines that

provide eigenvalues for general real matrices with parasitic eigenvalues are
sometimes (which makes it worse) of questionable accuracy with regard to the

driving ones.
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locally exact methods would remain stable for significantly larger step sizes

than would be possible for the implicit one. This condition can occur if the

initial conditions are just those which require the coefficients of the

unstable terms in the locally exact solution to be zero. The use of locally
exact methods to solve nonlinear problems with this kind of inherent

instability would require justification in individual cases.

Recommendations

On the basis of the above arguments, certain recommendations can be made

which apply to the choice of a numerical method for integrating the equations

(which are m in number, including those due to the fluid mechanics) govern-

ing one-dimensional, nonequilibrium fluid flow. If hl is the largest para-

sitic eigenvalue and Ik21 is the absolute value of the largest driving

eigenvalue, and if, for accuracy, we require lh21h _ e, then, unless a special

analysis of the particular problem indicates othervise 3 it is strongly
recommended that:

(a) All m equations should be differenced by the same method for a

given step,

(b) The method should be the implicit one given by equation (Ii) if

-ml/1 2/ >> (2/e)[(m + 2)/2]

and two further, relatively weak, recommendations are:

(c) The method can be the predictor-corrector combination given by

equation (9) if - 1/1 21< (2/e)[(m+ 2)/2]
(d) The method can be the implicit one if > + 2)/2]

Clearly it is not the purpose of this report to extol the implicit

method as a universal technique to be used in solving nonequilibrium problems.

No numerical method is better than all other methods in all respects, each

having its own merits. In modern machine languages most methods of the kind

considered herein are quite easy to code and represent only a small part of a

sophisticated program. In general, it appears that the option of using

more than one of them, as the occasion demands, appears to be the really

optimum procedure.

COMPARISONS OF NUMERICAL SOLUTIONS FOR THE FLOW OF AIR IN

CHEMICAL NONEQUILIBRIUM BEHIND A NORMAL SHOCK WAVE

All solutions were started by applying the Rankine-Hugoniot relations

across a normal shock assuming a fixed chemical composition and local vibra-

tional equilibrium for all species. The eight reactions shown in the insert

in figure 2(b) were used. The rate equations and constants in them were the

same as those used in reference 15 except that two reactions representing 0

and N ionization are included. The recombination rates of the latter were

assumed to be i00 times those given in reference 16.
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I0 .4

0 0
G3

-I0 _ -.4 .....

L6-20 m" -.8--

/L o/

-30 ---" -I,2-
.-

-40 -I.6 --

-50 -2.0

-60 -2.4 ---

-70 -2.8

-80 -3.2

\

4/

10-5 i0-4 10-3 10-2

x, cm

I__

I
i
L

Reactions

_ I Oz_20

2 N2_2N

3 NO_N+O

4 N+O2_NO+O

50+N2_NO+N

6 0_0 + +e-

7 N_N + +e-

8 NO--NO + +e-

I0 -I I I0

(b) Variation of degree of nonequilibrium. Note

change of scale for X 6 and XT.

Figure 2.- Air flow behind a normal shock; T = 300 ° K_ p_ = 14_650 dynes/em 2, 9.144 km/sec.

For scale see table I.
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Equations (i) were analyzed for a variety of cases, a representative one

of which is shown in complete detail. For the representative case the free-

T = 300 ° K I

p_ = 0.1695Xi0 -4 gm/cm s

u = 0.9144><106 cm/sec

stream conditions are

(l_)

The degree of nonequilibrium, Xi, for each reaction is defined as follows:

X1

Xa

X3

X4

i - pyla/74K1

i - pTaa/YsK2

1 - p717a/Tgna

i - 7176/7274K4

02 -_ 20

N2 _ 2N

NO-EN+O

N + 02 -_ NO + 0

X5 I

X6

X7

7276/717sK5

i - P737 e/7.]-K6

0 + N2 _ NO + N

0-_0+ + e -

i - PTsTs/TeK7 N % N+ + e-

Xs i - 7377/7172K8 N + O -_ NO + + e-

where K i is the equilibrium constant for the ith reaction and X i varies

from unity initially to zero as equilibrium is approached.

Numerical Solutions Using the Implicit Method

The case described was computed over the range from just behind the shock

to complete equilibrium, using the implicit method represented by equa-

tion (13). (The first few steps were explicit in order to establish the

matrix elements.) The results are shown in figure 2, the scale for which is

in table I. It should be remarked that the elements in [An] were not found

analytically. In every case they were calculated numerically by the equation

_F---_i_ Fi(l'Olwj) - Fi(0'99w$) (15)

_wj O.02wj

which has an error O[(O.02wj)a]. It should also be remarked that considerable

computing time can be saved if the paths in the subroutine which calculates

SFi/_w j are made different for u_ p, T, and the species. As programmed, the

16



TABLE I.- VERTICAL SCALE PER MAJOR DIVISION IN

FIGURES 2(a), 6, and 7

Variable Scale

u, cm/sec

P, gm/cm 3

P, dyne s/cm 2

T, OK

02, moles/gm

N2, moles/gm
O, moles/gm

N, mo les/gm

NO, mo les/gm

e-, moles/gm

NO +, moles/gm!

+ mole s/gm0 ,

N+, moles/gm

O. 2)<105

•4><10-4

•_<I0 7

.4><104

.iXlO -I

•IXlO -i

•IXlO-Z

•IXlO-i

•IXlO-Z

•IXlO -e

•IXIO-2

•iXl0-2

•ixl0-a

machine computing time on an IBM 7094 averaged less than 90 seconds per case,

and the total number of steps per case averaged less than 90.

While use of the implicit method over most of the range is far from

optimum on the basis of computing time, the results permit us to test the

reliability of the local expansion procedures used in equations (4) and (15)

when applied for many steps over a highly nonlinear region• This test can be

made since the first part of the solution (over half of the steps) can be

repeated using the same step intervals and conventional predictor-corrector

methods which require no local expansions or construction of [An]. Such cal-

culations also permit us to evaluate the local eigenvalues over the entire

flow region so that the numerical results can be interpreted and correlated

with the analysis presented in the previous sections. Finally, such results

permit us to see how the integration of a set of 13, nonlinear_ coupled equa-

tions can proceed from a region having no parasitic eigenvalues into a region

with several very large ones, without having stability difficulties•

Before comparing the results of the implicit method with those calculated

by explicit means, let us discuss the technique used to govern the step size

as the calculations proceeded•

The Method Used to Control Step Size

Most techniques for adjusting the size of a step while the numerical

integration is in progress depend upon the difference between a predicted and

corrected value. One such method which tends to isolate the maximum negative

eigenvalue in a set of stiff equations is presented in appendix B. When

implicit methods are used, however, such a technique is not applicable since

17



predicted and corrected values are not calculated. Furthermor% since the

implicit methods of interest are stable for all negative eigenvalues, the max-

imum eigenvalue is definitely not the one on which to base step size. As a

result, the following method for controlling the step size of implicit methods

was devised (it is not suitable for explicit methods when parasitic

eigenvalues are present):

(i) After each step, compute /_ = lW-*n+l - _nl"

(2) If any Aw_ < 0.001, ignore it in the following tests. (For the most

part this limited t£e tests to the velocity and temperature variations.)

(3) If all Awj that passed test 2 were such that Awj/wj < 0.01, double

the step size and take the next step. Otherwise, proceed to test 4.

(4) If any Awj that passed test 2 was such that Awj/wj > 0.i0, halve

the step size and take the next step. Otherwise, do not change the step size

and proceed.

No other tests (e.g., negative species concentrations) were made. This method

gave the step-size variation shown by the symbols on the temperature curves in

figure 2(a).

The Eigenvalue Distributions

A typical [An ] matrix (step no. 59) is shown in table If. The diagonal

elements are underlined and the eigenvalues (obtained from a subroutine listed

in ref. 17) are also given. Because
IO 5

10 4

10 3

I0 z

I0

i0-1 __ ]

10-6 10-5

0 t sl Iorgesf positive eigenvotue

n I st largest negative eigenvolue

0 2nd Iorgest negative eigenvolue

A 5rd lorgest negative eigenvolue

J I
10-4 t0-3

X,Cm

h

h

I

I0 -2 t0 -I I

Figure 3.- Eigenvalues for solutions shown in

figure 2.

of limitations in the subroutine_ the

eigenvalues below 17.2 are not to be

trusted (calculated eigenvalues were

never used in any of the numerical

integrations). Such results were used

to construct the curves shown in fig-

ure 3, which gives the largest posi-
o

tive eigenvalue and the largest

negative eigenvalue throughout the

region studied. The second and third

largest negative eigenvalues over the

latter part of the solutions are also

included. The parasitic eigenvalues

develop toward the end of the integra-

tion. At first glance, the region

over which the parasitic eigenvalues

exist seems relatively small. But,

since the plots are logarithmic, it is

actually relatively very large.
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TABLE II.- TYPICAL MATRIX [An] AND EIGENVALUES

i

2

3
4

5
6

7
8

9
io
ii

12

13

-0.716E O2
0

O .500E Ol
-0.318E-06

-0.780E-05
O.414E-07
0.802E-08

O.379E-05
o.236E-06
O.719E-O8
O.583E-O7

"-0.241E-07
O.986E-O5

-O.llTE
O.187E
O.408E
-O.908E

-O.325E

-0.197E
-O.IISE

-O.374E
-0.580E

-O.29OE
O.409E

Matrix

3

ii -0.365E 04

03 0.i02E-04
ii -O.IOOE 04
04 -0.162E-04

O5 o.266E-o2
03 0.172E-03 _
02 0.214E-05

05 -0.138E-O2
04 -0.460E-04
02 0.246E-04

03 0.333E-0L
03 0.I14E-03
04 0.755E-04

i

-0.23aE
0.655E

-O.48_

-0.613E O2
0.220E O3
O.627E Ol
0.606E ol

-o.134E 03
o.433E 02
o. 486E Ol
O.IOIE Ol
O.410E-O0
o.261E 02

Eigenvalues

5

09 -0.222E
OO 0.621E

08 -o.563E
0.283E
0.226g

0.485E
-o .284E
-o,io4E

-O.237E
0.210E
-O.IIIE

0.387E
0.293E

6

O90.18OE O9

OO -0.504E O0
O80. 326_ O8
02 0.543E 02

03 0.]-85E O3
Ol _0.836E O2
Ol -0.128E-O0

03 -0.604E
02 -0.376E
Ol -O.269E

01 -0.234E
01 -0.333E
02 0.251E

7

O.739E 09

-0.207E 01
-o.llSE 10
o.182E 05

-0.590E 04
-0.302E 01

-O.12LE 0>
02 -0.860E 02

Ol 0.607E 04
02 -0.15YE-00

02 -O.487E 01
02 0.20LE Ol

02 0.344E 02

Matrix

I
2

3
4

5
6

7
8

9
iO

ii
12

]-3

8

-0.524E 09
O.147E 01

-0.125E O9
-O.569E 02
O. 532E 03

-O.139E 01
-O,388E -00

-O.297E 03
0. 599E 02
-0.16LE-00

-0.210g 01
0.868E OO

O. 35LE 02

-0.109E i0
0. 305E 01
-0.443E 09

0.165E 04

O.107E 04 I
-O.243E O2

0.266E 03 1

O.528E 03
-O.214E 04

-0.153E-OO
-0.412E 02

O. 170E 02
O.335E 02

0.134E ii

375E o2
206E i0

•783E 04
0.798E 04

-0.78OE 04
-0.422E -O0

-0.I02E 03
-0.173E 02

-0,778E O4
-O.415E 02
O.171E O2
O.411E 02

ii

O.124E 09
-0.347E-00
0.186E 08

O.738E 02
0.162E 03

-0.571E 02
-o. 358E-00
-0.735E 02
-0.156E 02

-0.134E-OO

-o. 574E02
0.458E-00

o.293E O2

12 13

0.119E 09 -0
-0. 332E-00 0
O.194E 08 -0
O.169E 02 0
0.204E 03 0

-0.570E 02 -0
-0.343E-00 -0
-0.665E 02 -O

-0.151E 02 -o
-O.121E-OO -O

-O.lOOS ol -o

-0. >>gm 02 0

O.264E 02 __O

Eigenvalue s

00 I 0.101E 031 0.172E 021 00 0 0 -o. 381E-o4 oo 0
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Figure 4 is a plot of hh in which h is the largest positive

eigenvalue. The product lhhlmax in which h is the largest negative eigen-

value is shown in figure 5. These clearly establish the region outside of

which numerical methods with limited stability boundaries would fail. For

example, the second-order Runge-Kutta method (eq. (9)) would be unstable when

lhhlmax exceeded 2.

10-5 10-4 10-3

X, crrl

Figure 4,- Product of h and largest positive elgenvalue,

i0-_ lO-t

Results Using Other Methods

The initial values given in equations (14) provided a model on which to

base further numerical tests using different methods. First, the explicit

second-order Runge-Kutta method given by equation (9) was combined with the

method for step control given above and used to integrate the basic formulas

directly in the form presented in equation (3). In the range where lhhlmax

remained less than 2, the results were almost identical to those given by the

implicit method applied to equation (4). This occurred for values of x less

than about 0.002 (see fig. 5). A comparison of the two results is shown in

table III. In each case, about 62 steps were taken and the variation of step

size was essentially the same. (The slight difference in s is accounted for

by the few, fixed, explicit steps initially used to develop a reliable [An ]

matrix before the implicit method was turned on.) The results show that

numerical methods that make use of

(a) Local expansion of nonlinear coupled equations,

(b) Numerical evaluation of the elements in [An] , and

2O



i0 E 105

I0
I0 4

JXhJrnax

103

IO-2 IO -! I IO

X, Cm

Figure 5*- Product of h EL_d largest ne£ative elgen_lue.

IO2

TABLE III.- COMPARISON BETWEEN RESULTS OF NUMERICAL INTEGRATIONS

AFTER ABOUT 62 STEPS USING EKPLICIT AND IMPLICIT METHODS

S

x

u

P
T

0

N

e-

0e

Na

NO

NO +

0+

N+

Explicit

(eq.(9))

O. 20140E-02

•18588E-02
.73188E 05

•21177E-03

•12326E 05

•13125E-O1
•3o18LE-OI
• 25602E-02

• 10907E-04

•I1215E-01

•48791E-03

.81259E-05

•lO16_-o2
• 15359E-02

Implicit

(eq. (ll))

O. 20 IOOE-02

•18560E -02

•73179E 05

•2118LE-03
.12327E 05

•13122E-01

•30177E-01

•25616E-02

•10903E-04
•ll218E-01

• 48814E-03

.81074E-05

.i0196E -02

•15339E-02
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(c) Implicit integration of the equations thus derived

give an excellent numerical solution as far as accuracy is concerned, even
when the spread of elements in [An] is as drastic as that shownin table II.
It should be remarked that all calculations were madein 8-place,
floating-point arithmetic.

Whenthe explicit method wasused in the numerical integration for
x < 0.002 and the implicit method for x > 0.002 (at all times monitoring the
step size by the method for step control given above), the results at x = 3.24
were even closer to the "pure" implicit method than the comparison shownin
table III. A plot of the complete results of these computations is shownin
figure 6. The total machine time required for the combined explicit-implicit
calculation was less than half of that required to calculate the entire range
using the implicit method.

Scale

2.8 t,4 .7

2.4 t.2 .6

2.0 1.0 .5

1.6 ,8 .4

1.2 .6 .3

.8 .4 .2

.4 .2 .I -

0 0 0
10-6 10-5 10-4 10-3 10-2 i0-1

x, cm

Figure 6.- Numerical calculation using the explicit method for x < 0.002 (62 steps) and

implicit method for x > 0.002 (29 steps). Step control given on page 18.

Another calculation was made using the explicit method given by

equation (9) for x < 0.002, and then switching to Treanor's method for

x > 0.002. The results are shown by the solid lines in figure 7. The method

for step control given above was used throughout and Pi was set to zero if

it was calculated to be negative. The computation was continued for the same

number of steps (29) as that used for the implicit continuation shown in fig-

ure 6. Under the imposed conditions, the results are what would be expected

for the parasitic eigenvalue spread shown in figure 3 and the step control

employed.
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A final calculation, madeusing the computer program described in
reference 15_ is shownby the dashed curves in figure 7. For the lower values
of x these lines coincide with the solid lines. The computer program of
reference 15 makesuse of Treanor's methodbut with a suitably designed step
control described in the reference. The program was madeto compute for
5 minutes and progressed to a value of x equal to 0.46_ at which point the
step size was 0.002. At every computedpoint the results agreed with those
calculated by the implicit method and there were no visable oscillations.
This showsthat_ with proper step eontrol_ Treanor's method can give excellent
results. Its limitation in carrying solutions into regions with large para-
sitic eigenvalues is demonstrated by the fact that its running time was six
times that required for the calculations shownin figure 6.

2.8 1.4 .7

2.4 1.2 .6

2.0 1.0 .5

1,6 .8 .4

Scele

1.2 .6 .3

l B '4 " 2

.4 .2 .I

0 0 0

10-5 10-4 .10-3 10-2 iO-I

x, ctn

(a) Thermodynamic variables.

Figure 7.- Numerical calculation using equation (9) for x < 0.002 (62 steps) and Treanor's

method - with the step control given on page 18 - for x > 0.002 (29 steps)3 solid lines.

Numerical calculation using Treanor's method as programmed in reference 153 dashed lines.
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2.0 1.0 .5

1.6 .8 .4

Scale

1.2 .6 ,3

.8 .4 .2

.4 .2 .I

Scole

0 0 0
10-5

t,2 .6 .3

.8 .4 .2

.4 .2

0 0
10-5

t0-4

10-4

10-3

X,Cm

(b) Molecules and atoms.

10-3

X, crr't

(c) Electrons and ions.

Figure 7.- Concluded.

jO-Z

10-2
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CONCLUDING REMARKS

If a set of ordinary differential equations can be linearized with regard

to the dependent variables for a given value of the independent variable, then

local behavior can be related to the eigenvalues of the matrix constructed

from the linearized form. Then_ if the differential equations are integrated

numerically in a proper way_ the stability (and accuracy, if the equations are

autonomous) of the integration depends only upon these same eigenvalues and

is independent of the detailed coupling of the set. When some of these eigen-

values are parasiti% conventional explicit methods can require excessive

machine computing times. If properly applied_ specially designed explicit

methods, such as that due to Treanor_ can give considerable reductions in com-

puting time. However, we conclude from the results of this study_ that if

more than one very large parasitic eigenvalue occurs, the differential equa-

tions should be linearized locally and integrated implicitly (using the

simplest implicit method compatible with the desired accuracy).

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., 94035, May 31, 1967

129-04-03-02-00-21
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APPENDIX A

EFFECT OF USING SEVERAL DIFFERENCING SCHEMES iN ONE STEP

in this appendix it is shown that when, for a given step, different

schemes are used to difference the various differential equations in a coupled

_:set,_he stability and accuracy of the result will generally depend upon the
individual elements in the [A] matrix of the differential set.

Consider the two linear differential equations

W I --_.ally + ally

V w = a21Y + a2ev

(Al)

Apply the Euler predictor

Un+ l = 11n + hu n' (Ae)

to the first, and the implicit modified Euler method

i , ,)
Un+ 1 = u n + _ h(Un+l + u n (A3)

to the second. There results

Wn+ 1 = wn + h(allw n + al2v n)

I h( + + +Vn+ 1 = vn + _ aelWn+l ae2Vn+l aelw n aaev n)

Introduce the operator E _ exp[h(d/dx)] and combine terms. We find the

matrix equation

E - (i + allh)i aelh(E + i) E - i - aae(E + i

=O

having a characteristic equation which can be written

det a21 a22-s2(g_h)/ 0

in which SI(E,h) and S2(E,h) are the operators

(A4)

e6



sI-E - 1 2(E - i)
h ' $2 = h(E + i) (A5)

It is at once evident that the form of Sl results entirely from the choice

of an Euler predictor for the first row, and the form of $2 is brought about

entirely by the use of an implicit modified Euler method for the second row.

The generalization is clear. If a variety of methods are used on the indi-

vidual equations, a variety of operators appear on the diagonal of [A].

Returning to the simple example given by equation (A4), and using the
identities

_l ÷ _2 = all ÷ al2

_i-_2 = alla22 - al2a21

where hl and ha are the eigenvalues of

ll al2_

21 a22J

we can reduce equation (A4) to

SIS2 - (_i + _2)$2 + a22(S2 - Sl) + Zi_2 = 0 (A6)

Suppose the differencing equations (A2) and (A3) had been the same. Then

S1 = $2 = S and the left side of equation (A6) factors into (S - _l)(S - _2)

which shows no dependence on any of the elements 3 aij , regardless of the
functional dependence of S on E and h. Obviously this would be true in

general. However, for the different values of $I and $2 in the example_

equation (A6) becomes

+ E -2 - h(%1 + }_2) + _ %1%e + hae2

h2+ i + h(hl+ _2)+ _- _i_2 h222_ = 0 (A7)

which clearly depends on the element a22 as well as on the eigenvalues.

As a simple illustration, let _l = I, _2 = -i, and T = (I/2)ha22.

roots to equation (A7) are then

J i -gT
+ O(h 2)E=l-+h I-T

The

27



The two matrices

14.4 -17 ' -20 17 J

have the same eigenvalues (+I and -i)_ but have values of T equal in one

case to -8.5h and to +8.5h in the other. Use of the mixed differencing

schemes in the example is clearly inadvisable.
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APPENDIX B

ANALYSIS OF THE PARAMETER P IN TREANOR'S METHOD

The ratio_ P$, between the difference in the predicted and corrected
values of the dermvative and the function calculated at the intermediate step

in a standard, fourth-orde_Runge-Kutta method is a basic parameter used in

the method proposed by Treanor. In this appendix we analyze the significance

of Pi when it is calculated from linear equations with constant coefficients.
A set of "representative" stiff equations is then introduced and analyzed by a

variety of methods. It is shown that for any method an effective Pi (that is_

a number equal to that which would have resulted if the Runge-Kutta method had

been used) can be calculated as the integration proceeds. The consequence of

the results with regard to the accuracy and possible modification of Treanor's

method is discussed and a variety of examples are shown.

The predictor-corrector equivalent of the standard_ fourth-order,

Runge-Kutta method is

n+(i/2) = Vn + n+(i/2)

(3)
V = V
n+ i n + 2 n+(iI2)

= vn + _ L n*l * 2 L n+(i/2) * n+(i/2 * Vn'

(B1)

where the superscript designates a family generated in a single step. Let v

represent the ith element in the vector _. In Treanor's method the value

of Pi used in equation (i0) is determined by the equation

Pi =

, .(1)'
V(n+Iz/2) - Vn+(i/2 )

n+(i/2)- n+(i/2)

(B2)

Consider the coupled set of linear differential equations with constant

coefficients

_, _ d__ [A]_(s) + _(s) (B3)
ds
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which are not autonomous, and in which [A] is a matrix of constants. The

explicit results of applying equations (Bi) to (B3) are, for the first family,

W(n+(i/2 ) = [A] + [A] _n + [A]_n + fn+l
/

(B4)

and, for the second family,

_(m) =< (_"_ <2h__)m[A]2) _n (2h__n+(m/2) [I] + k,_/ [A] + + 2[A]# n +

(2)' = <[A] + <2h-) [A] 2 +_2h--)2[A]_ _n + <2h--_2[A]a_n [A]Tn+l+ 7n+l

(B5)

From these we form the ratio

fn+(1/2) - fn_[A] [A]2_n + [A]Tn + h/2

[A]2wl + [n]Tn + ' h/2

(B6)

where the division is defined to mean that an element in the vector in the

numerator is divided by the corresponding element of the vector in the

denominator.

In studying the effect of parasitic eigenvalues 3 as we have defined

them, we can consider the dominant eigenvalues of [A] to be real and distinct.

Now let _ be any linear combination of the eigenvectors of [A]. A well-

known result under these conditions (see, e.g._ ref. 9, PP- 205 and 206) is

that if

7= [A]J (B7)
[A]J

and division is defined as above_ when j is increased, all elements in A

approach the dominant elgenvalue whose eigenvector is _ive___n_n_ nonzero weight
in the formulation of g.
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Wenow seek to find how closely the results just presented apply to the
value of _n as n is advanced in a numerical solution. Our procedure is to
makea simple numerical experiment starting with three uncoupled equations and
their initial values such that

1.2

.8 f

.4 /_ vl

I I 1
0 I 2 3

vl' = -vl + i , v1(O) = 0 I

v2' = -5OOv2 , v2(O) = o.oo2 I (BS)v3' = -iOOOvs + i , vs(O) = 0.O01

I I I t ]
4 5 6 7 8

S

The exact solutions are shown in

"002_/'v2 _v 3

°°ll _ ; I t I I

0 .001 .002 .005 .004 .005 .006 .007 .008

S

Sketch (a).- Exact solutions of equations (BS).

sketch (a), and the value of [L] as

used in equation (5) is given by

F01[T] = [i] -5o

L-lOOOj

The eigenvalue -I000 is everywhere

parasitic since vs does not vary at

all_ and the eigenvalue -500 quickly

becomes parasitic relative to -i.

These equations are coupled by a set

of transformations given in equa-

tions (6) and (7); the matrix used for

[B] (chosen at random) is

-I.8944 -0.84661 -1.2519

[B] = I-.14343 -.48809  6171 (B9)

L i. 4721 -i. 1597 -. 41521_

The corresponding matrix [A], which equals [B][L][B] -l, is I

-19409 74820 -17686 1
[A] = 1-4657.6 17717 -4267.3 (BIO)

!

L 314.68 -2187.2 19o.85

The coupled equations for w take the form

iAll computations were made in double precision to isolate roundoff

errors. We present [A] only to illustrate the spread in the values of the

elements, and both [A] and [B] have been truncated, for presentation_ to five

places.
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;, = [A]; + [B]_ (Bll)

'_F . •......... @_....
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0 I 2 3 4 5 6 7 8

S

Sketch (b).- Variation of _ in equation (Bll)

calculated by the implicit method using step

control (BI2).

The behavior of the exact solutions

for w is shown in sketch (b).

Several numerical methods were used to

integrate equation (BII) for about

i00 steps, and for each method the
variation of P was recorded.

Before discussing the results, it

is necessary to say something about the

step-size control used in the integra-

tion. In cases with parasitic eigen-

values, the magnitude of the largest

negative eigenva!ue is not necessarily

the best parameter with which to judge

step size. A variety of methods for

controlling step size has been pro-

posed, but we do not wish to list or

judge them here. The particular procedure adopted in all the numerical

methods discussed in this appendix is the following:

(i) Choose an initial step size.

(2) Advance one step and compute

i lAw = max Wn+ I - w n

(3) If _w > 0.05 halve the step size and repeat. > (B12)

(4) If Aw < 0.0125 double the step size and repeat unless

(a) An imposed maximum has been reached,

(b) The step size was previously doubled in this same step.

The study of equation (BII) is a controlled experiment and this procedure was

designed especially for it. The procedure is no___ttrecommended in general.

Using the implicit method given by equation (ii) together with the step-

size control just described_ the equations for _ were integrated for I00

steps starting with a step size equal to 0.02. The results_ plotted in

sketch (b), were excellent for the full i00 steps. The value of s was

advanced to 7.74 (the symbols show the actual step locations) and the final

14 step sizes were equal to 0.32, the maximum allowed. When, after i00 steps,

w was uncoupled (using the relation _ = [B]-_), it compared to the exact

analytical solution for _ as follows:

v_sem i Exact

_. 999565
.000000

.001000

Numerical

-0.999582

.000000

.001000
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Under the constraints imposedby the methodused for step control, the
step size remained at 0.02 for the first 55 steps. During the first I0 of
these, P was essentially the samefor all three w's and equal to about 500.
A transition occurred between steps i0 and 40 during which wild fluctuations 2
of P were noted. From step 40 through step 73 all values of _ were again
very uniform and all remained equal to about i. At this point the step size
was doubled from 0.04 to 0.08 and3 as further doubling occurred and the w's
approached their asymptotic values, _ began to fluctuate. The actual

P is shownin sketch (c).variation of
2000

1500

I000 -

P3 500 <

0 --'_ !
4' r

- 500

-I000 I
0 I

With the result given by (B6)

and the discussion concerning (B7),

the variation of _ shown in

sketch (c) can be explained. In the

first place we notice that the

dominant eigenvalue (the one associ-

ated with vs and equal to -i000)

was never detected by equation (B6).

I....I.... I" • "I"" -'_"• ' _ " . I The reason is simple. The exact solu-

tion for v3 under the given initial

conditions is a constant. In the

terminology used to discuss equa-
l I I I I I I

2 3 4 5 6 7 8 tion (B7), the corresponding eigen-

s vector has a zero weight in the
Sketch (c).- Value of P3 calculated from construction of _. To be sure trun-

equation (B6) using results from implicit

method. Variations of Pl and P2 were cation errors will begin to excite
nearly identicalwith P3. V 3 but, since the method is abso-

lutely stable for all negative h, this excitation is continually suppressed
and has no effect on the value of P throughout most of the calculation. On

the other hand, the eigenvector associated with v2 is activated by the ini-

tial conditions and, for a while, appears in all three elements of P. But

relative to vz, v2 is very heavily damped and in any numerical integration

that is stable for all negative h, its influence eventually disappears from
-->

the leading significant figures that affect P. For the implicit method used,

this disappearance is completed when s _ 0.6 and, at that point, the largest
eigenvalue detectable in w is -i. The disappearance of v2 does not occur

at once, though, and for many steps a "struggle for dominance" (ref. 93

p. 206) between the eigenvalues associated with vI and ve takes place. This

phenomenon is quite evident in sketch (c) for values of s around 0.3. Even-

tually all elements of w approach a constant and, although the solution

itself is quite stable, P begins a meaningless fluctuation brought about by

small truncation errors in all of the terms.

Next, equation (Bll) was analyzed by a standard, fourth-order Runge-

Kutta method using the identical step-size control. The results for _ are

shown in sketch (d). The method is unstable for lhhl > 2.8(IZH I > 1.4) so,

21t should be emphasized that P was in no way used in the numerical

integration.
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Sketch (d).- Solution of equations (BII) using

standard, fourth-order, Runge-Kutta method

with step-size control (BI2).

1500

I000

500

I 1 I I
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Sketch (e).- Value of P3 calculated from

equation (B6) or equation (B2) using results

of Runge-Kutta method. Variations of Pl

and P2 are nearly identical with Ps.

with this kind of step control_ it

automatically settled s on a step size

equal to 0.0025 for most of the inte-

gration. The scallop effect (which

can also be noticed in the Runge-Kutta

results presented in ref. 3) occurs

because every once in a while, for

just one step_ use of the unstable

step size, 0.005_ is permitted by the

particular test employed. This causes

a relatively large error in _, due to

the presence of v3. Immediately the
method is forced to return to its

stable step size and remain there

until this error is sufficiently

reduced, at which point the phenomenon

is repeated. The value of s is

advanced to 0.315 in i00 steps 3 and

for this s the uncoupled values 4 of

v are

Exact

vl 0.270211

ve .000000

v3 .001000

The value of

Numerical

0.270211

.000000

.007086

generated by

this method (once again_ this value

_as never used in the integration) is

shown in sketch (e). The method

started itself with step sizes varying

between 0.02 and 0.005 because it

could not immediately detect the

largest negative eigenvalue. After

13 steps, however, the error intro-

duced by the unstable integration

brought the presence of vs clearly

into view, and throughout the rest of

the calculation all elements of P

were about i000.

Next_ Treanor's method with the same step-siz_ control was used to

integrate equation (BII). This time, of course, P was both calculated and

used at each step. The results for _ are shown in sketch (f). After the

third step the method had "found" the largest eigenvalue and all three

SThe step-size control being used is quite inefficient for this and other

methods with limited stability boundaries. In the presence of parasitic

eigenvalues such methods increase their step size until they reach their

stability boundaries and then proceed to first double and then halve at almost

every step.

41f the uncoupling is made just after an unstable step size is used, the

error in v3 is about five times that shown.
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Sketch (f).- Solution of equations (BII)

using TreanorTs method with step-slze

control (B12).

elements of _ were nearly i000 for

steps 3 through 5. In this range a

step size of 0.02 passed all tests.

This procedure is unstable for the

-500 eigenvalue, however_ and at the

sixth step Pl suddenly became nega-

tive, while P2 and Ps changed to 97

and 364, respectively. The rule in

using Treanor's method is to set nega-

tive values of Pj equal to zero and
proceed. This can cause an abrupt

change in the accuracy and stability

of the integration, a change which,

in general, depends critically (see

appendix A) on the magnitude and sign

of the individual elements in [A]. In

the present example the result was the

same as if a completely new set of

initial values were introduced, and

the integration departed drastically

from the desired solution. At each of

the three abrupt vertical rises in w s

shown in sketch (f), the sign of one

of the elements in _ suddenly became

negative while the other two remained

at large positive values. It was fur-

ther noted that a few steps before

each of the less abrupt, nearly hori-
zontal turns the sarne behavior in P

occurred.

To give Treanor's method a chance 3 it was again used to integrate

equation (BII), but with a step size fixed at 0.008, and all elements of

fixed at I000. According to the stability boundaries shown in figure i, this

integration should be stable throughout. After i00 steps s had been

advanced to 0.8 and the uncoupled values of _ were

Exact

v_ o.55o671
v2 .000000

vs .001000

Numerical

0.550576
.000001

.001000

To verify further the stability boundaries in figure i, this type of run was

repeated with all elements of P again fixed at i000, but _ith a fixed step

size equal to 0.01. The results were an interesting verification of theorem I

and corollary 2. After 50 steps s was advanced to 0.5 and when _ was

uncoupled, there resulted for

Exact Numerical

vl 0.399504 0.399547

v2 .000000 .377562_I0 s

vs .001000 .001013
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All elements of the computed 5 _ (which, of course, was not used) were almost

exactly 500 throughout the run. Notice that, although an enormous error is

made in v2 (all elements of w were greater in magnitude than 108 at the

fiftieth step)_ the two uncoupled terms for which the method is stable

remained accurate through the fourth significant figure.

The results of the test runs made using Treanor's method with fixed

values of P_ and step size suggested the following modifications to his
method which _would make it more reliable in general cases. One modification

would be to

(I) Use the same differencing scheme

(2) Find _ by means of equation (B2) and let Pmax = max(J)

(3) If Pmax is negative, set Pmax = 0

-->

(4) Reset all elements of 1_ with Pmax so that all equations are

differenced by the same equations in a given step.

When applied to equations with widely different parasitic eigenvalues, this

method has a real upper stability boundary l_hl = i0 and I_HI = 5.

This modified method was combined with the same step control employed in

the previous examples and used to integrate equation (BII). The results for

w are shown in sketch (g). Since it was limited by the unrefined doubling-

halving step control procedure, the method was forced to fluctuate between

step sizes of 0.005 and 0.01 for which it was stable and unstable 3 respec-

1.2

4

-.4

-8

-I.2
0

..°°oo ° •

jJ

"":*';_-_._,_,..w._._.

f I I I 1 I

.2 ,4 .6 .8 1.0 t.2

S

Sketch (g).- Treanor's modified method (BI3)

with step-size control (BI2) applied to

equations (Bll).

tively. The scalloped effect caused

when this kind of step control is used

in methods with bounded stability is
evident. The computed values of

are shown in sketch (h). In each step

all three values of P were made to

equal the maximum one shown. The

method advanced s to 0.935 in i00

steps. Define the error terms

_vj = (Vj)exac t - (Vj)numerica I

and Av2 and Avs (Avz < 0.0002

throughout) are plotted in sketch (i).

A second modification to

Treanor's method would be to

(i) Use the same differencing

scheme

SCompute either by equation (B2) or (B6), the results being the same.
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(2) Set all elements of P equal to 8/h at every step.

Such a method also has a real stability boundary IkHl = 0.5. The results of
applying it to equation (Bll) are shown in sketches (j)_ (k)3 and (Z). When

.12

2000 .08
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1000
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.O4
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'22.'t:te_'.'_,",_"

_°|i_ _ -.04

I I I I I I _.08 _ I
0 .2 .4 .6 .8 1,0 1.2 0 .2 .4

S

Sketch (h).- Values of _ calculated using

Treanor's modified method (B13).

i .i •

I
I f

! I

.6 .8

S

Av 3

I I

1.0 1.2

Sketch (i).- Errors In v2 and v 3 using Treanor's

modified method (BZ3).
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Sketch (j).-Treanor's modified method (BI_)

with step-size control (B12) applied to

equations (BII) .
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500 _....

I I l, I I I
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Sketch (k).- Value of P3 calculated using

Treanor's modified method (BI4). Variations

of PI and P2 are nearly identical wlth Ps.
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Sketch (_),- Error in v 3 using TreanorVs

modified method (B14).
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combined with the step-size control (BI2)_ and started with _s = 0.005_ this

method at once chose a step size equal to 0.01 for which it is marginally

stable. The eigenvalue -500 was detected and -i000 excluded as long as this

step size was used, see sketch (k). Eventually_ however_ the step was doubled

to the unstable size 0.01. In a few steps the eigenvalue -i000 emerged (as

indicated by sketch (k))_ and the error phenomenon typical of this kind of

step control ensued.

Certainly the curves for w in sketches (d), (g), and (j) could be made

much smoother with more refined techniques for modifying the step size. How-

ever_ two things must be borne in mind: First_ such refinements reduce the

total distance the methods advance a solution in a given number of steps;

second_ the implicit method requires no such refinements to improve the
smoothness.
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APPENDIX C

STABILITY CRITERION FOR TREANOR'S METHOD APPLIED TO v' = _v

Treanor's method can be written in predietor-corrector form as

i
(Cla)

: i h_(_), (Clb)V(n+ll/2 ) Vn + 2 n+(i/2)

_(_) F2 (_)' r v(_)' ]

Fpv(_) _(_)' ]_n+_-- vn + h_n'F_ + h_3(Pvn+ _n') + h82L n+(_/2) + n+(_/2)

rPv(=) v(_)' ] mPv(_) _(=)'] (C_d)+ h52 L n+(i/2) + n+(i/2) + h51 L n+1 + n+1

where

F 1 -

-Ph -Ph e -Ph - i + Ph - i (ph)2
e - i e - i + Ph

-Ph ' F2 = (Ph) 2 , F$ = _(ph)s

(C2)

and

51 = -F2 + 4F3 I

52 = 2(F2 - 2--.F3)

53 = 4F3 - 3F2

The stability of equations (CI) is determined by applying them to

The resulting matrix equation

(C3)

v' = _V.
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E I/e 0 0

_ 1 hhE1/e EI/2 0
2

_hPheFaE i/2 -2hhFeE l/2 E

--(p+k)h52 El/a -(P+k) hSeE I/e -(P+h)h51E

-l-hh(Fl-2-F2)

E -(l+hhF I) -(P+h) hSs__

v.(2)

(3)
v n

__Vn _

where E _ exp[h(d/dx)] has a characteristic equation with only one nonzero

root. It is given by the equation

0

(C4)

E = 1 + khF1 + h(h + p)h2[2-Fa - 4Fs + (4Fs - Fe)(FI + PhFe)]

1 Z2(k + p)hs[2_Fe _ 4Fs + 2--Fe(4Fs - F2)(2 + Ph)]+_

1 hs(k + P)h_2(_3 - F2)+_
(c5)

The combinations of real positive Ph and negative kh which make the right-

hand side of equation (C5) equal to unity form the stability boundaries shown

in figure I. One can easily show

lim PhFl = i , PhFe = i , Ph_s = 1/2

ph-_oo

Thus, for large values of Ph, equation (C5) reduces to

i h2h2
E= l+hh+_

which is the characteristic equation for the second-order, Runge-Kutta method.

This gives the asymptotic value of the left stability boundary shown in

figure I.
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